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J. Phys. A :  Gen. Phys., Vol. 5, June 1972 Printed in Great Britain 

Canonical second rank tensors for chiral SU(3) x SU(3) 

K J BARNES 
Department of Physics, Queen Mary College, Mile End Road, London El 4NS, UK 

MS received 19 January 1972 

Abstract. The general second rank SU(3) tensor formed from a single hermitian octet 
vector is expressed in terms of a base set constructed to have particularly simple properties. 
The relevance to chiral lagrangian theories of hadron physics is discussed, and other 
applications are suggested. 

1. Introduction 

Recent developments in hadron physics (Gasiorowicz and Geffen 1969) have led to the 
problem of constructing the general second rank SU(3) tensor from a single hermitian 
octet vector, and to the need to form contractions of such tensors against one another. 
We shall briefly review how this specific problem arises, before giving a general solution 
and suggesting some alternative uses of the results. 

One of the major techniques in studying the application of chiral algebras (both 
K(2) = SU(2) x SU(2) and K(3) = SU(3) x SU(3)) to hadron dynamics (Gasiorowicz 
and Geffen 1969) has been the construction of explicit chiral invariant Lagrangians with 
their associated currents (Callan et a1 1969), and with the subsequent addition of sym- 
metry breaking terms. In order to construct such Lagrangians it is necessary to study 
the transformation of particle fields under the chiral group, and in particular to find the 
explicit form of transformation law for those fields forming nonlinear realizations. The 
general theory of such realizations (Coleman et a1 1969 and Isham 1969) is well established 
but leads directly only to a power series in fields which is difficult to compute beyond 
low orders. For the case of the K(2) algebra there are two approaches which lead to 
general closed form expressions for the transformation laws. One of these is the 
algebraic approach of Weinberg (1968) and the other the matrix method associated with 
the name of Gursey (Chang and Gursey 1967). Both these methods are in principle 
capable of extension to the K(3) level. Macfarlane et a1 (1970, and references therein) 
have shown how the algebraic method leads either to equations of the sixth degree or to 
linked partial differential equations and have found some simple solutions, while in the 
alternative approach they discovered three particular models. More recently the main 
technical difficulty arising in the Gursey method has been resolved by the explicit 
construction of the appropriate general three by three unitary matrix (Barnes et a1 1972a). 
In either approach the second rank tensor which specifies the axial variation of the 
pseudoscalar meson fields (the Goldstone bosons of the scheme (Gasiorowicz and Geffen 
1969)) is the primary objective, and for our present purposes we shall only indicate 
briefly how it enters in the algebraic approach where it appears most directly. The 
interested reader is urged to consult the references given above (particularly Weinberg 
1968 and Macfarlane et a1 1970) for greater detail. 
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There are sixteen generators of K(3) satisfying the usual commutation relations 

[ Q V ,  Qrl = ifijkQkV 

[ Q V ,  Q f l  = ifijkQ: (i = 1 . . . 8 )  

[Qf, Q f l  = ifijkQkV 

where f i j k  are the standard SU(3) structure constants (Gell-Mann and Ne’eman 1964), 
and the commutation relations 

[ Q V ,  MjI = i f i j k M k  

[ Q f ,  M j ]  = iFij(M) 

define the transformation properties induced on the fields M i  used to describe the 
pseudoscalar mesons. The tensor Fij ,  which contains two arbitrary functions of the two 
SU(3) invariants, is to be found (Macfarlane et al 1970) by writing the most general 
second rank tensor formed from the single octet M i  and imposing the Jacobi identity 
between a meson field and two axial generators. Once this is accomplished, the required 
transformation laws of all other fields may be found (and the required Lagrangians 
constructed) provided contractions of Fij with itself and other second rank tensors 
(formed from M i )  can be calculated. Details of this development may be found in the 
work of Macfarlane et al(l970) where a list of ten independent second rank tensors is 
suggested; and Dittner (1971 private communication) has since shown that these ten 
tensors are indeed an independent and complete set. However the computational 
difficulties which arise when one works with this set are so formidable that a general 
solution has never been found by the algebraic method. Moreover the solutions obtained 
by the Giirsey method (Dondi 1971) give little insight and are intractable in use unless 
the properties of the general second rank tensors are understood. We now construct a 
base set of such second rank tensors, from a single octet, in a manner which makes 
subsequent computation quite straightforward. 

2. The tensors 

A general octet vector M i  is well known to specify a dual vector 

N i  = dijkMjMk 

and two independent SU(3) invariants 
(4) 

X = M i M i  ( 5 )  

Y = di jkMiMjMk (6) 

and 

where the constants d i j k  are taken as in the ‘Eightfold Way’ (Gell-Mann and Ne’eman 
1964). These vectors have been extensively studied by Macfarlane et a1 (1970), and by 
Michel and Radicati (1968). The latter authors introduce particular vectors which are 
most important for our work. They call charge vectors those M i  for which I attains its 
maximum value of ($X3)lI2, and N’ is parallel to M i .  Special vectors are those M i  for 
which Y is zero, and N’ (which is then orthogonal to M i )  is itself a charge vector. We 
shall use the symbols qi and si for hermitian charge and special vectors of unit norm. It 
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has recently been established (Barnes et  a1 1972a) that a general hermitian vector M i  may 
be expressed in the form 

1 2  

.M' = ($1 [N: exp{i(u++fn))+ N ,  exp(-i(a+$c))]  ( 7 )  

where 

3 Y 2  l 2  
sin 3 = [F) 

and the special and charge vectors obey the relationships 

which make the subsequent algebra tractable. The inverses of equation (7) are easy to 
obtain using equations (lOH 13) and have been given explicitly (Barnes er al 1972a), thus 
y i  and si are known in terms of M i  and we may attempt to construct our base set of tensors 
from them. Now, as stated above, a set of ten tensors is required and we take initially 

and the unit (l)ij = d i j ,  where the left hand sides suggest an obvious matrix notation 
which will now be employed to  the exclusion of the indices. These matrices are all clearly 
hermitian, the first four being antisymmetric and the rest symmetric. We have taken this 
set by comparison with those of Macfarlane et al(1970), so that by substituting (Mi -+ si )  
and (J3 N' -+ qi) into their work we have a check on many of the results we later derive. 
Moreover the work of Dittner (1971 and private communication) assures us that we have 
a complete and independent set of tensors, so that a general tensor may be written as 
a sum of products of functions of the two invariants with the members of our base set. 
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Since we are effectively dealing with eight by eight matrices it may be possible to 
find a set of eight Pa with the projective properties 

and if these can be identified with linear combinations of our provisional set and in- 
corporated into our base set then subsequent manipulation clearly becomes simple. 
Our task becomes much easier when it is noticed that, because si and qi are orthogonal 
unit vectors, the matrix 

(I-I) . .  IJ = &.-s . s , -q .q .  LJ L J  1 1  (25) 

acts as a projector and allows us to treat the problem effectively as the direct sum of two 
by two and six by six problems. 

The two by two part of the problem is clearly contained in the matrices defined by 
equations (1 7H20), and their multiplication rules 

IC,  = z, = Col 

xaCb = 16ab + iE,bcCc 

(26) 

(27) 

where (a,  b = 1 - 3 )  and is the Levi-Civita tensor, follow immediately from the 
orthonormality of the charge and special vectors. Obviously our notation now assumes 
some significance, for we have a simple SU(2) problem. Within this sector there are, of 
course, only two independent matrices with projective properties, and these may be 
taken to be 

P, = +(I + naZo) 
and 

Ps = +(I - n,Z,) 

where n, is an arbitrary SU(2) three component vector with unit norm. 
There remains a six by six part of the problem defined by the six matrices 

(1 - I)F,(1 - I )  = F, (30) 
(1  - I)Fq(l - I )  = F, (31) 
(1 -I)C(l -I) = c (32) 
(1 - I)D,( 1 - I )  = D, - Z3 (33) 

(l-Z)D,(I - I )  = D , + C ,  (34) 
and (1 - I )  which now plays the role of the unit matrix in this subspace. Clearly the 
remaining task is to exhibit six independent linear combinations of these matrices which 
have projective properties. For this purpose we need to compute all products of the 
matrices, and these results are given in the Appendix together with the well known 
SU(3) identities from which they follow (Macfarlane et a1 1970). We have ordered the 
products so as to facilitate comparison with the limits of the corresponding equations 
in the Appendix of Macfarlane et a1 (1970), and in passing note agreement with all except 
(B20), (B22) and (B24) of that work. Macfarlane kindly sent us his corrections to the first 
two of these thus removing those discrepancies, and Dittner (private communication) 
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has confirmed that an error exists in (B24), so that we now have a fair measure of 
confidence in our results. (Of course our equation (A.21) is much easier to derive than 
(B24).) With this machinery at our disposal we look for three projective matrices 
among the symmetric set, and a perusal of the Appendix soon reveals 

PO = *{(1 - l )+2(0 ,+C1)}  

P' = ${(l-Z)-(Dq+Xl)k J3(D,-C3)} 
(35) 

(36) 

as the appropriate ones. Taking traces we see that these define a separation of the space 
into the direct sum of three two by two subspaces, so that we expect to find one anti- 
symmetric matrix in each of these new subspaces. Following our earlier procedure we 
define 

(37) 

(38) 

(39) 

where we clearly have an independent set still, and the normalization has been taken for 
convenience. By using the results in the Appendix we see that 

A' = P°FsPQ = Fs-2C 

J 3  A +  = 2P+F,,Pi = Fq+2 J 3  C 

J 3  A -  = 2P-FqP- = Fq-2J3  C 

AOAO = po (40) 

A + A +  = p +  (41) 

A - A -  = p -  (42) 

while all other products are obvious from the properties of the projection operators. As 
the final step we may now introduce the notation 

2P, = Po+Ao 

2P2 = Po - A o  

(43) 

(44) 

2P3 = P +  +A' (45) 

2P4 = P +  - A +  (46) 

2P5 = P - + A -  (47) 

2P6 = P -  - A -  (48) 

for these Pi(i = 1-6) are manifestly matrices with the required projective properties. 
This gives our main result that the required general second rank tensor may be taken in 
the matrix form (with tensor indices suppressed) 

6 3 

F = u,P,+u,Z+ bbCb 
i =  1 b =  1 

(49) 

where the a,, b, and a, are functions of the SU(3) invariants X and Y,  and where the two 
extra projection matrices defined in (28) and (29) should be employed whenever possible. 

3. An example and conclusions 

An immediate and important application of these results is, of course, to the specification 
of nonlinear realizations of K(3) and the construction of the corresponding chiral 
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Lagrangian as discussed above (Barnes et a1 1972b). However our formalism also lends 
itself to a description of finite SU(3) transformations on an octet vector. This would 
clearly be of great importance in calculations of the type recently proposed by Dashen 
(197 l), where finite (rather than infinitesimal) transformations are crucial. The ortho- 
gonal matrix required to transform an octet vector is 

R = exp(iF,) (50) 

and the M j  are now to be regarded as eight real parameters specifying the transformation. 
Substituting from equation (7) we find 

R = exp i,/X(F, sin a + F, cos a) 

and hence 

R = exp iJX&/3(P3 - P4 + P5 - P6) sin a 

+ +(2P1 - 2P2 + P3 - P4 - P, + P6) cos a}  

(52) 

(53) 

when expressed in terms of matrices with projective properties. If we note that the 
completeness is given by 

6 2 Pi+Z = 1 (54) 
i =  1 

then 

R = I + p1 exp(iJX cos a)  + Pz exp( - iJX cos a) 

+ p3 exp{ - i JX cos(cr + $71)) + P4 exp{ iJX cos(cr + 371)) 

+ P ,  exp{iJX cos(cr -in)> + P6 exp{ - iJX cos(cr - +)) (55) 

follows at once. Setting a equal to zero we obtain the special case 

R(M' = JX si) = I + Pl exp(iJX) + Pz exp( - iJX) 

+ (p3 + p6) exp(3iJX) + (P4 + Ps) exp( - +iJx) 

while when c i  = in we find the charge case result 

R(Mi  = JX qi) = (I + Pl + Pz)  + (P3 + P,) exp(iiJ3X) 

+ (P4 + P6) exp( - i iJ3x)  (57) 

where in each case the bracketed groups of matrices clearly have projective properties. 
Results equivalent to those in equations (50), (56) and (57) have recently been derived by 
Rosen (1971) who used as starting point the characteristic equation for the F, matrix. 
Detailed comparison is difficult because his general answers are given in implicit form, 
but the general structures of our three results are identical and several terms checked at  
random also agree. We point out that there may be some additional advantage in our 
formalism for calculations of the Dashen type, since the arguments of Michel and 
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Radicati (1968) suggest that a smooth limit from the general case to those cases where 
charge and special vectors are involved may be crucial. 
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Appendix 

The S U ( 3 )  identities 

f m l i f m j k  + fml j fmk i  + fmlk fmi j  = (A.1) 

fmlidmjk +fmljdmki  +fmlkdmij  = ( A 4  

3(dmlidmjk + dmljdmki + dmlkdmij) = blibjk + bljbki + 6lkbij (A .3)  

3fmij fmkl  = 2(6ik6 j l  - bi lb jk )  + dmikdmjl  - dmildmjk ('4.4) 

3dmijdmkl = bik6j l  + bilbjk - 6 i j b k l  + fmik fmj l  + fmi l fm jk  (A.5) 
are sufficient to allow calculation of products of the six matrices in the text. By simple 
contraction, and use of the above identities, we obtain the results 

2D,D, = l + l - C l - D ,  (A .6)  
2D,D, = C, - D,-2iC2 (A.7)  
2D,D, = C, - D, + 2iC, (A.8) 

2D,D4 = l + I + C l + D ,  (A.9)  
2FsF, = l - I + C l + D q  (A.lO) 

2F,F, = D,-C,  = 2F,Fs (A. 1 1 )  

2F4Fq = l - I - C l - D q  (A.12) 

2D,F, = F, = 2F,D, (A.13)  

2D,F4 = - F  = 2F D (A.14) 

D,F, 3C F,D, (A.15) 

D,Fs = F, - 3C = FsD, (A.16) 

4 C D ,  = F, = 4D,C (A.17) 

12CF, = 1 - I - C l -  D,  = 12FsC (A.18) 

2CD4 = -C = 2D4C (A.19) 

4CF, = D,-C,  = 4F,C (A .20) 

24CC l - I - C 1 - - D q  (A.21) 

4 4 4  

where matrix notation (as described in the text) has been used, and the order of the 
results has been arranged for easy comparison with Appendix B of Macfarlane et al(1970). 
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